2015-12-4: Difference between revisions
RobertRogo (talk | contribs) No edit summary |
RobertRogo (talk | contribs) No edit summary |
||
| Line 17: | Line 17: | ||
\begin{cases} | \begin{cases} | ||
0 & \text{, dacă } n \text{divide pe} k | 0 & \text{, dacă } n \text{divide pe} k | ||
f(c) & \text{, dacă } n \text{nu divide pe} | f(c) & \text{, dacă } n \text{nu divide pe} | ||
\end{cases}</math> | \end{cases}</math> | ||
Revision as of 16:33, 2 September 2023
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Problema:} Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} un corp cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \geq 2} elemente si . Aratati ca urmatoarele afirmatii sunt echivalente:
Exista astfel incat ;
Pentru orice avem .
Din teorema lui Lagrange aplicata grupului avem ca , deci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(aX)=g((aX)^{m-1})=g(a^{m-1}X^{m-1})=g(X^{m-1})=f(X)} .
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (ii) \rightarrow (i)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (Robert \ Rogozsan)}
Ne folosim de urmatoarea
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Lema:} Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} un corp finit cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} elemente. Atunci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{a \in F}a^k= \begin{cases} 0 & \text{, dacă } n \text{divide pe} k f(c) & \text{, dacă } n \text{nu divide pe} \end{cases}}