E:5756: Difference between revisions
No edit summary |
No edit summary |
||
| Line 10: | Line 10: | ||
<math display="block">\frac{GA-AE}{GA} = \frac{GF - FA}{GF} \Rightarrow \frac{GE}{GA} = \frac{GA}{GF},</math>ceea ce revine la<math display="block">GA^2 = GE \cdot GF \Leftrightarrow GC^2 = GE \cdot GF.</math> | <math display="block">\frac{GA-AE}{GA} = \frac{GF - FA}{GF} \Rightarrow \frac{GE}{GA} = \frac{GA}{GF},</math>ceea ce revine la<math display="block">GA^2 = GE \cdot GF \Leftrightarrow GC^2 = GE \cdot GF.</math> | ||
Din puterea punctului <math>G</math> față de cercul determinat de punctele necoliniare | Din puterea punctului <math>G</math> față de cercul determinat de punctele necoliniare <math>E</math>, <math>C</math>, <math>F</math> rezultă că dreapta <math>GC</math> este tangentă la cercul circumscris triunghiului <math>ECF</math>. | ||
Revision as of 19:08, 11 December 2024
E:5756 (Dumitru Acu)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ABCD} un romb. Prin vârful Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} ducem o dreaptă arbitrară care intersectează pe Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BC} în , pe în , iar pe diagonala în . Să se arate că dreapta este tangentă în cercului circumscris triunghiului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ECF} .
Soluție
Din faptul că semidreapta Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (DB} este bisectoarea unghiului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sphericalangle ADC} și semidreapta Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (GB} este bisectoarea unghiului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sphericalangle AGC} se deduce că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ AG \right] \equiv \left[ CG \right]}

În triunghiul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle FGC} , aplicăm Teorema bisectoarei, pentru bisectoarea Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (GD} a unghiului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sphericalangle FGC} și obținemFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{CD}{DF} = \frac{GC}{GF}} Cum patulaterul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ABCD} este un romb, avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB \parallel BC} , deci Teorema lui Thales implică Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{CD}{DF}=\frac{EA}{AF}} Atunci avemFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{EA}{AF} = \frac{GA}{GF} \Rightarrow \frac{EA}{GA} = \frac{AF}{GF}} Prin intermediul proporțiilor derivate se obține
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{GA-AE}{GA} = \frac{GF - FA}{GF} \Rightarrow \frac{GE}{GA} = \frac{GA}{GF},} ceea ce revine laFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle GA^2 = GE \cdot GF \Leftrightarrow GC^2 = GE \cdot GF.}
Din puterea punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} față de cercul determinat de punctele necoliniare Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} rezultă că dreapta Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle GC} este tangentă la cercul circumscris triunghiului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ECF} .