S:L22.108: Difference between revisions
Pagină nouă: '''S:L22.108. (Nicolae Mușuroia)''' ''Fie <math>A, B \in \mathcal{M}_3 \left( \mathbb{R}\right)</math> cu <math>AB = BA</math>, <math>A^2+B^2</math> neinversabilă și <math>\det(A) = \alpha \cdot \det(B) \ne 0</math>, unde <math>\alpha \ne 1</math>. Arătați că <math display="block">\frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. </math>'' '''Soluție.''' |
No edit summary |
||
Line 4: | Line 4: | ||
'''Soluție.''' | '''Soluție.''' | ||
Ipotezele <math>\det(A^2+B^2) = 0</math> și <math>AB=BA</math>, cu ''<math>A, B \in \mathcal{M}_3 \left( \mathbb{R}\right)</math>'', implică <math display="block">\det \left( A+iB \right) \cdot \det\left( A- iB\right) =0</math>Fie polinomul <math>f = \det \left( A+X\cdot B\right) \in \mathbb{R}\left[X\right]</math>. Atunci, există <math>m,n \in \mathbb{R}</math> pentru care<math display="block">f\left( x\right) = \det\left(B\right) \cdot x^3 + mx^2 + nx +\det(A), \forall x\in \mathbb{C}.</math> Cum <math>f\left( i\right) \cdot f\left( -i \right)=0</math>, avem <math>f\left( i\right) = f\left( -i \right) = 0</math>, deci <math>x_1 = i</math> și <math>x_2 = -i</math> sunt rădăcini ale polinomului <math>f</math>. | |||
Dacă <math>x_1, x_2, x_3 \in \mathbb{C}</math> sunt rădăcinile polinomului <math>f</math>, atunci din [https://ro.wikipedia.org/wiki/Formulele_lui_Vi%C3%A8te relațiile lui Viete] avem<math display="block">x_1x_2x_3 = - \frac{\det(A)}{\det(B)} = - \alpha.</math>Se obține <math>x_3 = -\alpha</math>, ceea ce implică <math display="block">f = \det(B) \cdot \left(X^2 + 1 \right) \cdot \left( X + \alpha \right)</math> |
Revision as of 08:29, 20 July 2024
S:L22.108. (Nicolae Mușuroia)
Fie cu , neinversabilă și , unde . Arătați că
Soluție.
Ipotezele și , cu , implică
Fie polinomul . Atunci, există pentru care
Cum , avem , deci și sunt rădăcini ale polinomului .
Dacă sunt rădăcinile polinomului , atunci din relațiile lui Viete avem
Se obține , ceea ce implică