14683: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''14683 (Răzvan Ceuca)'''
'''14682 (Cristina Vijdeluc și Mihai Vijdeluc)'''


'''Enunț:'''
'''Enunț:'''


Fie x și y două numere naturale nenule. Demonstrați că dacă <math>2^x + 3^y = 2^y + 3^x</math>, atunci x = y.
Se consideră triunghiul ABC în care <math>m(\angle A) = 2 \cdot m(\angle B) + 30^\circ</math>. Punctul M este situat pe segmentul (BC) astfel încât AM = AC.
 
Dacă <math>m(\angle MAC) = 2 \cdot m(\angle MAB)</math>, arătați că BM = MC.




Line 9: Line 11:
'''Soluție:'''
'''Soluție:'''


Relația din enunț se mai poate scrie <math>2^x - 2^y = 3^x - 3^y</math>. Presupunem că <math>x \neq y</math>; atunci x &lt; y sau x &gt; y.
Notăm <math>a = m(\angle ABC)</math> și <math>x = m(\angle BAM)</math>. Avem <math>m(\angle BAC) = 2a + 30^\circ</math> și <math>m(\angle CAM) = 2x</math>, din ipoteză. Atunci <math>3x = 2a + 30^\circ</math> de unde <math>x = \frac{2a}{3} + 10^\circ</math>. Pe de altă parte avem <math>m = (\angle AMC) = a + x = \frac{5a}{3}+ 10^\circ</math> ca unghi exterior <math>\triangle AMB</math>. Cum AM = AC vom avea <math>m(\angle ACM) = \frac {5a}{3} + 10^\circ</math>. Acum în <math>\triangle ABC</math> avem <math>a + 2a + 30^\circ + \frac{5a}{3} + 10^\circ = 180^\circ</math>, de unde <math>a = 30^\circ</math>, apoi <math>x = 30^\circ</math> și <math>m(\angle AMC) = 60^\circ</math>. Rezultă acum că triunghiul ABM este isoscel, de unde BM = AM, iar <math>\triangle AMC</math>(1) este echilateral AM = AC = CM,(2). Din (1) și (2) rezultă BM = MC.
 
Dacă x &gt; y atunci relația se scrie <math>2^y(2^{x-y} - 1) = 3^y(3^{x-y} - 1)</math>. Avem <math>2^y < 3^y</math> și <math>2^{x-y} - 1 < 3^{x-y} -1 </math>, de unde <math>2^y(2^{x-y}-1) < 3^y(3^{x-y} - 1)</math>, ceea ce este fals. Analog se procedează dacă x &lt; y. În concluzie x = y.

Latest revision as of 14:50, 16 January 2024

14682 (Cristina Vijdeluc și Mihai Vijdeluc)

Enunț:

Se consideră triunghiul ABC în care . Punctul M este situat pe segmentul (BC) astfel încât AM = AC.

Dacă , arătați că BM = MC.


Soluție:

Notăm și . Avem și , din ipoteză. Atunci de unde . Pe de altă parte avem ca unghi exterior . Cum AM = AC vom avea . Acum în avem , de unde , apoi și . Rezultă acum că triunghiul ABM este isoscel, de unde BM = AM, iar (1) este echilateral AM = AC = CM,(2). Din (1) și (2) rezultă BM = MC.