|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| | | '''27401 (Radu Pop)''' |
| | |
| '''27401 (Radu Pop, Baia Mare)''' | |
|
| |
|
| ''Fie <math>n \in \mathbb{N}</math>. Să se arate că | | ''Fie <math>n \in \mathbb{N}</math>. Să se arate că |
Line 9: |
Line 7: |
| '''Soluție:''' | | '''Soluție:''' |
|
| |
|
| Fie <math> x,y \in [0,\infty)</math>.Avem | | Fie <math> x,y \in [0,\infty)</math>. Avem |
| <math display="block">(x+1)(y+1)(x+y+n^2+n)=(n+1) \biggl(\underbrace{ \frac{x}{n + 1}+ \frac{x}{n + 1}+ \ldots +\frac{x}{n + 1}}_{(n+1)\text{ ori}}+1 \biggr) \cdot </math> | | <math display="block">(x+1)(y+1)(x+y+n^2+n)=(n+1) \biggl(\underbrace{ \frac{x}{n + 1}+ \frac{x}{n + 1}+ \ldots +\frac{x}{n + 1}}_{(n+1)\text{ ori}}+1 \biggr) \cdot </math> |
|
| |
|
Line 18: |
Line 16: |
| <math display="block">\ge (n+1)\sqrt[n+2]{\frac{x^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{y^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{xy}{(n+1)^{2}}} \cdot (n+2)^3 =</math> | | <math display="block">\ge (n+1)\sqrt[n+2]{\frac{x^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{y^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{xy}{(n+1)^{2}}} \cdot (n+2)^3 =</math> |
|
| |
|
| <math display="block">\frac{xy}{n+1}(n+2)^3.</math> | | <math display="block">=\frac{xy}{n+1}(n+2)^3.</math> |
| | |
| | Rezultă că <math display="block">(n+1)(x+1)(y+1)(x+y+n^2+n) \ge (n+2)^3xy.</math>Fie <math>x=a-1\ge 0</math> şi <math>y=b-1\ge0</math>. |
|
| |
|
| Rezultă că <math>(n+1)(x+1)(y+1)(x+y+n^2+n) \ge (n+2)^3xy</math>. Fie <math>x=a-1\ge 0</math> şi <math>y=b-1\ge0</math>. Obţinem <math>(n+1)ab(a+b+n^2+n-2)\ge(n+2)^3(a-1)(b-1)</math>, de unde <math>(n+1)ab(a+b)+(n^3+2n^2-n-2)ab \ge (n+2)^3ab-(n+2)^3(a+b)+(n+2)^3</math>, deci <math>(n+1)ab(a+b)-(4n^2+13n+10)ab+(n+2)^3(a+b) \ge (n+2)^3</math>.
| | Obţinem <math display="block">(n+1)ab(a+b+n^2+n-2)\ge(n+2)^3(a-1)(b-1),</math>de unde <math display="block">(n+1)ab(a+b)+(n^3+2n^2-n-2)ab \ge (n+2)^3ab-(n+2)^3(a+b)+(n+2)^3</math>deci <math display="block">(n+1)ab(a+b)-(4n^2+13n+10)ab+(n+2)^3(a+b) \ge (n+2)^3.</math> |
Latest revision as of 08:36, 1 December 2024
27401 (Radu Pop)
Fie
. Să se arate că

oricare ar fi
Soluție:
Fie
. Avem


![{\displaystyle \geq (n+1){\sqrt[{n+2}]{\frac {x^{n+1}}{(n+1)^{n+1}}}}\cdot {\sqrt[{n+2}]{\frac {y^{n+1}}{(n+1)^{n+1}}}}\cdot {\sqrt[{n+2}]{\frac {xy}{(n+1)^{2}}}}\cdot (n+2)^{3}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da5a051e846cfee48569fdae4c3148a089880848)

Rezultă că

Fie

şi

.
Obţinem

de unde

deci
