27401: Difference between revisions

From Bitnami MediaWiki
Pagină nouă: \usepackage{MnSymbol} '''27401 (Radu Pop, Baia Mare)''' ''Fie <math>n \in \mathbb{N}</math>. Să se arate că <math display="block"> (n+1)ab(a+b)-(4n^3+13n+10)ab+(n+2)^3(a+b) \geq (n+2)^3, </math> oricare ar fi <math>a,b \in [1,\infty)</math>'' '''Soluție:''' Fie <math> x,y \in [0,\infty)</math>.Avem <math display="block">(x+1)(y+1)(x+y+n^2+n)=(n+1) \biggl(\underbrace{ \frac{x}{n + 1}+ \frac{x}{n + 1}+ \ldots +\frac{x}{n + 1}}_{(n+1)\text{ ori}}+1 \biggr) \cdot </math>...
 
mNo edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
\usepackage{MnSymbol}
'''27401 (Radu Pop)'''


'''27401 (Radu Pop, Baia Mare)'''
''Fie <math>n \in \mathbb{N}</math>. Să se arate că''
 
''Fie <math>n \in \mathbb{N}</math>. Să se arate că
<math display="block">  (n+1)ab(a+b)-(4n^3+13n+10)ab+(n+2)^3(a+b) \geq (n+2)^3, </math>
<math display="block">  (n+1)ab(a+b)-(4n^3+13n+10)ab+(n+2)^3(a+b) \geq (n+2)^3, </math>
oricare ar fi <math>a,b \in [1,\infty)</math>''
''oricare ar fi <math>a,b \in [1,\infty)</math>''


'''Soluție:'''
'''Soluție:'''


Fie <math> x,y \in [0,\infty)</math>.Avem
Fie <math> x,y \in [0,\infty)</math>. Avem
<math display="block">(x+1)(y+1)(x+y+n^2+n)=(n+1)  \biggl(\underbrace{ \frac{x}{n + 1}+ \frac{x}{n + 1}+ \ldots +\frac{x}{n + 1}}_{(n+1)\text{ ori}}+1 \biggr) \cdot </math>
<math display="block">(x+1)(y+1)(x+y+n^2+n)=(n+1)  \biggl(\underbrace{ \frac{x}{n + 1}+ \frac{x}{n + 1}+ \ldots +\frac{x}{n + 1}}_{(n+1)\text{ ori}}+1 \biggr) \cdot </math>


Line 16: Line 14:
\biggl(\frac{x}{n+1} + \frac{y}{n+1} +\underbrace{1+1+\cdots + 1 }_{n\text{ ori}}\biggr) \ge</math>
\biggl(\frac{x}{n+1} + \frac{y}{n+1} +\underbrace{1+1+\cdots + 1 }_{n\text{ ori}}\biggr) \ge</math>


<math display="block">\ge (n+1)\sqrt[n+2]{\frac{x^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{y^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{xy}{(n+1)^{2}}}  \cdot (n+2)^3) =</math>
<math display="block">\ge (n+1)\sqrt[n+2]{\frac{x^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{y^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{xy}{(n+1)^{2}}}  \cdot (n+2)^3 =</math>
 
<math display="block">=\frac{xy}{n+1}(n+2)^3.</math>


<math display="block">\frac{xy}{n+1}(n+2)^3.</math>
Rezultă că <math display="block">(n+1)(x+1)(y+1)(x+y+n^2+n) \ge (n+2)^3xy.</math>Fie <math>x=a-1\ge 0</math> şi <math>y=b-1\ge0</math>.


Rezultă că <math>(n+1)(x+1)(y+1)(x+y+n^2+n) \ge (n+2)^3xy</math>. Fie <math>x=a-1\ge 0</math> şi <math>y=b-1\ge0</math>. Obţinem <math>(n+1)ab(a+b+n^2+n-2)\ge(n+2)^3(a-1)(b-1)</math>, de unde <math>(n+1)ab(a+b)+(n^3+2n^2-n-2)ab \ge (n+2)^3ab-(n+2)^3(a+b)+(n+2)^3</math>, deci <math>(n+1)ab(a+b)-(4n^2+13n+10)ab+(n+2)^3(a+b) \ge (n+2)^3</math>.
Obţinem <math display="block">(n+1)ab(a+b+n^2+n-2)\ge(n+2)^3(a-1)(b-1),</math>de unde <math display="block">(n+1)ab(a+b)+(n^3+2n^2-n-2)ab \ge (n+2)^3ab-(n+2)^3(a+b)+(n+2)^3</math>deci <math display="block">(n+1)ab(a+b)-(4n^2+13n+10)ab+(n+2)^3(a+b) \ge (n+2)^3.</math>

Latest revision as of 10:59, 2 November 2024

27401 (Radu Pop)

Fie . Să se arate că

oricare ar fi

Soluție:

Fie . Avem


Rezultă că

Fie şi .

Obţinem

de unde
deci