27401: Difference between revisions
Pagină nouă: \usepackage{MnSymbol} '''27401 (Radu Pop, Baia Mare)''' ''Fie <math>n \in \mathbb{N}</math>. Să se arate că <math display="block"> (n+1)ab(a+b)-(4n^3+13n+10)ab+(n+2)^3(a+b) \geq (n+2)^3, </math> oricare ar fi <math>a,b \in [1,\infty)</math>'' '''Soluție:''' Fie <math> x,y \in [0,\infty)</math>.Avem <math display="block">(x+1)(y+1)(x+y+n^2+n)=(n+1) \biggl(\underbrace{ \frac{x}{n + 1}+ \frac{x}{n + 1}+ \ldots +\frac{x}{n + 1}}_{(n+1)\text{ ori}}+1 \biggr) \cdot </math>... |
mNo edit summary |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''27401 (Radu Pop)''' | |||
''Fie <math>n \in \mathbb{N}</math>. Să se arate că'' | |||
''Fie <math>n \in \mathbb{N}</math>. Să se arate că | |||
<math display="block"> (n+1)ab(a+b)-(4n^3+13n+10)ab+(n+2)^3(a+b) \geq (n+2)^3, </math> | <math display="block"> (n+1)ab(a+b)-(4n^3+13n+10)ab+(n+2)^3(a+b) \geq (n+2)^3, </math> | ||
oricare ar fi <math>a,b \in [1,\infty)</math>'' | ''oricare ar fi <math>a,b \in [1,\infty)</math>'' | ||
'''Soluție:''' | '''Soluție:''' | ||
Fie <math> x,y \in [0,\infty)</math>.Avem | Fie <math> x,y \in [0,\infty)</math>. Avem | ||
<math display="block">(x+1)(y+1)(x+y+n^2+n)=(n+1) \biggl(\underbrace{ \frac{x}{n + 1}+ \frac{x}{n + 1}+ \ldots +\frac{x}{n + 1}}_{(n+1)\text{ ori}}+1 \biggr) \cdot </math> | <math display="block">(x+1)(y+1)(x+y+n^2+n)=(n+1) \biggl(\underbrace{ \frac{x}{n + 1}+ \frac{x}{n + 1}+ \ldots +\frac{x}{n + 1}}_{(n+1)\text{ ori}}+1 \biggr) \cdot </math> | ||
Line 16: | Line 14: | ||
\biggl(\frac{x}{n+1} + \frac{y}{n+1} +\underbrace{1+1+\cdots + 1 }_{n\text{ ori}}\biggr) \ge</math> | \biggl(\frac{x}{n+1} + \frac{y}{n+1} +\underbrace{1+1+\cdots + 1 }_{n\text{ ori}}\biggr) \ge</math> | ||
<math display="block">\ge (n+1)\sqrt[n+2]{\frac{x^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{y^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{xy}{(n+1)^{2}}} \cdot (n+2)^3) | <math display="block">\ge (n+1)\sqrt[n+2]{\frac{x^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{y^{n+1}}{(n+1)^{n+1}}} \cdot \sqrt[n+2]{\frac{xy}{(n+1)^{2}}} \cdot (n+2)^3 =</math> | ||
<math display="block">=\frac{xy}{n+1}(n+2)^3.</math> | |||
<math display="block"> | Rezultă că <math display="block">(n+1)(x+1)(y+1)(x+y+n^2+n) \ge (n+2)^3xy.</math>Fie <math>x=a-1\ge 0</math> şi <math>y=b-1\ge0</math>. | ||
Obţinem <math display="block">(n+1)ab(a+b+n^2+n-2)\ge(n+2)^3(a-1)(b-1),</math>de unde <math display="block">(n+1)ab(a+b)+(n^3+2n^2-n-2)ab \ge (n+2)^3ab-(n+2)^3(a+b)+(n+2)^3</math>deci <math display="block">(n+1)ab(a+b)-(4n^2+13n+10)ab+(n+2)^3(a+b) \ge (n+2)^3.</math> |
Latest revision as of 10:59, 2 November 2024
27401 (Radu Pop)
Fie . Să se arate că
oricare ar fi
Soluție:
Fie . Avem
Rezultă că
Fie şi .
Obţinem
de unde
deci