26713: Difference between revisions

From Bitnami MediaWiki
Pagină nouă: '''28354 (Radu Pop și Vasile Ienuțaș)''' <br /> ''<br />Se consideră șirul de numere reale <math>(x_n)_{n \geq 0}</math> și <math>(y_n)_{n \geq 0}</math> cu <math>x_n \geq 1</math>, <math>y_n \geq 1</math>, pentru orice <math>n \in \mathbb{N}</math>, și <math>\lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2</math>. Să se calculeze <math>\lim_{{n \to \infty}} x_n</math> și <math>\lim_{{n \to \infty}} y_n</math>.'' <br /> '''Soluție:''' <br /> <br /> Avem <math> 2 \leq x_n...
 
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''28354 (Radu Pop și Vasile Ienuțaș)'''
'''26713 (Radu Pop și Vasile Ienuțaș)'''
<br />
 
''<br />Se consideră șirul de numere reale <math>(x_n)_{n \geq 0}</math> și <math>(y_n)_{n \geq 0}</math> cu <math>x_n \geq 1</math>, <math>y_n \geq 1</math>, pentru orice <math>n \in \mathbb{N}</math>, și <math>\lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2</math>. Să se calculeze <math>\lim_{{n \to \infty}} x_n</math> și <math>\lim_{{n \to \infty}} y_n</math>.''
''Se consideră șirul de numere reale <math>(x_n)_{n \geq 0}</math> și <math>(y_n)_{n \geq 0}</math> cu <math>x_n \geq 1</math>, <math>y_n \geq 1</math>, pentru orice <math>n \in \mathbb{N}</math>, și <math>\lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2</math>. Să se calculeze <math>\lim_{{n \to \infty}} x_n</math> și <math>\lim_{{n \to \infty}} y_n</math>.''
<br />
 
'''Soluție:'''  
'''Soluție:'''  
<br />
<br />
<br />
<br />
Avem <math> 2 \leq x_n - y_n \leq \sqrt{2(x_n^2 + y_n^2)} </math> și cum <math> \lim_{{n \to \infty}} \sqrt{2(x_n^2 + y_n^2)} = 2 </math>, rezultă că <math> \lim_{{n \to \infty}} (x_n + y_n) = 2 </math>. Cum <math> 1 \leq x_n \leq x_n + y_n - 1 </math> și <math> \lim_{{n \to \infty}} (x_n + y_n - 1) = 1 </math>, obținem <math> \lim_{{n \to \infty}} x_n = 1 </math>. Analog, <math> \lim_{{n \to \infty}} y_n = 1 </math>.
Avem <math> 2 \leq x_n - y_n \leq \sqrt{2(x_n^2 + y_n^2)} </math> și cum <math> \lim_{{n \to \infty}} \sqrt{2(x_n^2 + y_n^2)} = 2 </math>, rezultă că <math> \lim_{{n \to \infty}} (x_n + y_n) = 2 </math>.  
 
Cum <math> 1 \leq x_n \leq x_n + y_n - 1 </math> și <math> \lim_{{n \to \infty}} (x_n + y_n - 1) = 1 </math>, obținem <math> \lim_{{n \to \infty}} x_n = 1 </math>. Analog, <math> \lim_{{n \to \infty}} y_n = 1 </math>.

Latest revision as of 11:35, 2 November 2024

26713 (Radu Pop și Vasile Ienuțaș)

Se consideră șirul de numere reale și cu , , pentru orice , și . Să se calculeze și .

Soluție:

Avem și cum , rezultă că .

Cum și , obținem . Analog, .