3828 - D Caesar Queries: Difference between revisions

From Bitnami MediaWiki
Mraa (talk | contribs)
Pagină nouă: ==Cerința== După ce Julius Caesar l-a învins pe Pompey în bătălia de la Pharsalus , acesta decide să țină un festin în cinstea soldaților săi loilai . El are q scenarii posibile pt oaspeți definite printr o pereche (n,k) care înseamnă că fiecare dintre cei n invitați pot alege unul dintre cele k feluri de mâncare . Deoarece Julius Caesar a plătit cei mai buni bucătari pentru a prepara mancarea , el își dorește ca fiecare fel de mâncare să fi fost ales...
 
Mraa (talk | contribs)
 
(One intermediate revision by the same user not shown)
Line 30: Line 30:
În primul exemplu , dacă notăm cu 1 primul fel de mâncare și cu 2 al doilea fel de mâncare , atunci configurațiile bune sunt : 12 și 21 ( primul soldat poate alege ori primul ori al doilea fel de mâncare , iar al doilea alege felul de mâncare pe care nu l-a ales primul soldat pentru că toate felurile de mâncare să fie alese de cel puțin un soldat )
În primul exemplu , dacă notăm cu 1 primul fel de mâncare și cu 2 al doilea fel de mâncare , atunci configurațiile bune sunt : 12 și 21 ( primul soldat poate alege ori primul ori al doilea fel de mâncare , iar al doilea alege felul de mâncare pe care nu l-a ales primul soldat pentru că toate felurile de mâncare să fie alese de cel puțin un soldat )
==Rezolvare==
==Rezolvare==
<syntaxhighlight lang="python3" line="1">
MOD = 666013
MOD = 666013


def numar_configuratii(n, k):
def numar_configuratii(n, k):
    total_aranjamente = pow(k, n, MOD)
    aranjamente_fara_un_fel = pow(k-1, n, MOD)


    rezultat = (total_aranjamente - aranjamente_fara_un_fel) % MOD
  total_aranjamente = pow(k, n, MOD)
    return rezultat
  aranjamente_fara_un_fel = pow(k-1, n, MOD)
  rezultat = (total_aranjamente - aranjamente_fara_un_fel) % MOD
  return rezultat


if __name__ == "__main__":
if __name__ == "__main__":
    # Citim numărul de scenarii
    q = int(input())


    # Pentru fiecare scenariu, citim valorile și calculăm rezultatul
  # Citim numărul de scenarii
    for _ in range(q):
  q = int(input())
        n, k = map(int, input().split())
  # Pentru fiecare scenariu, citim valorile și calculăm rezultatul
        rezultat = numar_configuratii(n, k)
  for _ in range(q):
        print(rezultat)
      n, k = map(int, input().split())
      rezultat = numar_configuratii(n, k)
      print(rezultat)
 
python caesar.py
python caesar.py
</syntaxhighlight>

Latest revision as of 18:35, 11 January 2024

Cerința[edit | edit source]

După ce Julius Caesar l-a învins pe Pompey în bătălia de la Pharsalus , acesta decide să țină un festin în cinstea soldaților săi loilai . El are q scenarii posibile pt oaspeți definite printr o pereche (n,k) care înseamnă că fiecare dintre cei n invitați pot alege unul dintre cele k feluri de mâncare . Deoarece Julius Caesar a plătit cei mai buni bucătari pentru a prepara mancarea , el își dorește ca fiecare fel de mâncare să fi fost ales de minimum un invitat. O configurație este un șir de n numere a , al i-lea soldat a ales felul a(i) . Câte configurații distincte există care să îndeplinească cerințele marelui Julius Caesar ? Două șiruri sunt distincte dacă diferă prin cel puțin o poziție.

Date de intrare[edit | edit source]

Fișierul de intrare caesar.in conține pe prima linie un număr q care reprezintă numărul de scenarii la care trebuie să răspundeți urmate de q linii , pe fiecare aflându-se o pereche (n , k) reprezentatnd numărul de invitați , respectiv numărul de feluri de mâncare disponibile.

Date de ieșire[edit | edit source]

Fișierul de ieșire caesar.out conține pe q linii răspunsul pentru fiecare scenariu modulo 666013.

Restricții și precizări[edit | edit source]

Q <= 100.000 , N <= 2000 K <= 2000 pentru orice query. Pentru 20 puncte Q = 1. Pentru alte 20 de puncte N , K <= 200. Exemplu: caesar.in

1 2 2 caesar.out

2 caesar.in

1 5 4 caesar.out

240

Explicație[edit | edit source]

În primul exemplu , dacă notăm cu 1 primul fel de mâncare și cu 2 al doilea fel de mâncare , atunci configurațiile bune sunt : 12 și 21 ( primul soldat poate alege ori primul ori al doilea fel de mâncare , iar al doilea alege felul de mâncare pe care nu l-a ales primul soldat pentru că toate felurile de mâncare să fie alese de cel puțin un soldat )

Rezolvare[edit | edit source]

<syntaxhighlight lang="python3" line="1"> MOD = 666013

def numar_configuratii(n, k):

  total_aranjamente = pow(k, n, MOD)
  aranjamente_fara_un_fel = pow(k-1, n, MOD)
  rezultat = (total_aranjamente - aranjamente_fara_un_fel) % MOD
  return rezultat

if __name__ == "__main__":

  # Citim numărul de scenarii
  q = int(input())
  # Pentru fiecare scenariu, citim valorile și calculăm rezultatul
  for _ in range(q):
      n, k = map(int, input().split())
      rezultat = numar_configuratii(n, k)
      print(rezultat)

python caesar.py </syntaxhighlight>