28437: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''28437 (Nicolae Mușuroaia)''' | '''28437 (Nicolae Mușuroaia)''' | ||
</br></br> | </br></br>'' Fie șirul '' <math> (a_n)_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația'' <math> a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. </math>'' Determinați ''<math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n}. </math> | ||
'' Fie șirul '' <math> (a_n)_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația'' <math> a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. </math>'' Determinați ''<math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n}. </math> | </br></br>'''Soluție:'''</br>Pentru orice <math> {n \geq 2} </math> avem <math>a_n = \ln(a_1 + a_2 + ... + a_{n-1}) | ||
</br></br> | |||
'''Soluție:''' | |||
</br> | |||
Pentru orice <math> {n \geq 2} </math> avem <math>a_n = \ln(a_1 + a_2 + ... + a_{n-1}) | |||
</math>, deci <math>a_n = a_1 + a_2 + ... + a_{n-1} = e^{a_n}</math>. Rezultă că pentru orice <math> {n \geq 2} </math> are loc | </math>, deci <math>a_n = a_1 + a_2 + ... + a_{n-1} = e^{a_n}</math>. Rezultă că pentru orice <math> {n \geq 2} </math> are loc | ||
</br> | </br><math display="block" id="28437eq1">a_{n+1}=\ln(e^{a_n} + a_n).</math>Deoarece <math> a_{n+1} - a_n = \ln(e^{a_n} + a_n) - \ln (e^{a_n} \ge 0) </math> pentru orice <math>{n \geq 2}</math> deducem că șirul <math> (a_n)_{n \geq 2} </math> este strict crescător.<br>Dacă șirul <math> (a_n)_{n \geq 2} </math> este mărginit superior, atunci <math> (a_n)_{n \geq 2} </math> este convergent cu <math>\lim_{{n \to \infty}} (a_n) = a \in (0, \infty). </math> Trecând la limită în relația (1), obținem <math> a = \ln(e^{a_n} + a)</math> de unde <math> a = 0 </math>, absurd! Prin urmare, șirul <math>((a_n)_{n \geq 1}</math> este crescător și nemărginit superior, deci <math>\lim_{{n \to \infty}} a_n =\infty</math>. | ||
<math display = "block">a_{n+1}=\ln(e^{a_n} + a_n).</math> | <br>Atunci <math display="block">\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln(e^{a_n} + a_n) - \ln(e^{a_n})}{a_n} \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln\left(1+\frac{a_n}{e^{a_n}}\right)}{\frac{a_n}{e^{a_n}}} = 1</math> deoarece din <math>\lim_{{n \to \infty}} a_n =\infty </math> rezultă că <math display="block"> \lim_{{n \to \infty}} \frac{a_n}{e^{a_n}}=0.</math> | ||
Deoarece <math> a_{n+1} - a_n = \ln(e^{a_n} + a_n) - \ln (e^{a_n} \ge 0) </math> pentru orice <math>{n \geq 2}</math> deducem că șirul <math> (a_n)_{n \geq 2} </math> este strict crescător. | |||
< | |||
Dacă șirul <math> (a_n)_{n \geq 2} </math> este mărginit superior, atunci <math> (a_n)_{n \geq 2} </math> este convergent cu <math>\lim_{{n \to \infty}} (a_n) = a \in (0, \infty). </math> Trecând la limită în relația (1), obținem <math> a = \ln(e^{a_n} + a)</math> de unde <math> a = 0 </math>, absurd! Prin urmare, șirul <math>((a_n)_{n \geq 1}</math> este crescător și nemărginit superior, deci <math>\lim_{{n \to \infty}} a_n =\infty</math>. | |||
< | |||
Atunci <math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln(e^{a_n} + a_n) - \ln(e^{a_n})}{a_n} \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln\left(1+\frac{a_n}{e^{a_n}}\right)}{\frac{a_n}{e^{a_n}}} = 1</math> deoarece din <math>\lim_{{n \to \infty}} a_n =\infty </math> rezultă că <math> \lim_{{n \to \infty}} \frac{a_n}{e^{a_n}}=0</math> |
Latest revision as of 14:31, 11 November 2023
28437 (Nicolae Mușuroaia)
Fie șirul cu termenii strict pozitivi, dat de relația Determinați
Soluție:
Pentru orice avem , deci . Rezultă că pentru orice are loc
Deoarece pentru orice deducem că șirul este strict crescător.
Dacă șirul este mărginit superior, atunci este convergent cu Trecând la limită în relația (1), obținem de unde , absurd! Prin urmare, șirul este crescător și nemărginit superior, deci .
Atunci
deoarece din rezultă că