28437: Diferență între versiuni

De la Universitas MediaWiki
Fără descriere a modificării
Fără descriere a modificării
 
(Nu s-au afișat 9 versiuni intermediare efectuate de alți 3 utilizatori)
Linia 1: Linia 1:
'''28437 (Nicolae Mușuroaia)'''
'''28437 (Nicolae Mușuroaia)'''
'' Fie șirul '' <math> ((a_n))_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația <math> a_{n+1} </math>
</br></br>'' Fie șirul '' <math> (a_n)_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația'' <math> a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. </math>'' Determinați ''<math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n}. </math>
</br></br>'''Soluție:'''</br>Pentru orice <math> {n \geq 2} </math> avem <math>a_n = \ln(a_1 + a_2 + ... + a_{n-1})
</math>, deci <math>a_n = a_1 + a_2 + ... + a_{n-1} = e^{a_n}</math>. Rezultă că pentru orice <math> {n \geq 2} </math> are loc
</br><math display="block" id="28437eq1">a_{n+1}=\ln(e^{a_n} + a_n).</math>Deoarece <math> a_{n+1} - a_n = \ln(e^{a_n} + a_n) - \ln (e^{a_n} \ge 0) </math> pentru orice <math>{n \geq 2}</math> deducem că șirul <math> (a_n)_{n \geq 2} </math> este strict crescător.<br>Dacă șirul <math> (a_n)_{n \geq 2} </math> este mărginit superior, atunci <math> (a_n)_{n \geq 2} </math> este convergent cu <math>\lim_{{n \to \infty}} (a_n) = a \in (0, \infty). </math> Trecând la limită în relația (1), obținem <math> a = \ln(e^{a_n} + a)</math> de unde <math> a = 0 </math>, absurd! Prin urmare, șirul <math>((a_n)_{n \geq 1}</math> este crescător și nemărginit superior, deci <math>\lim_{{n \to \infty}} a_n =\infty</math>.
<br>Atunci <math display="block">\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln(e^{a_n} + a_n) - \ln(e^{a_n})}{a_n} \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln\left(1+\frac{a_n}{e^{a_n}}\right)}{\frac{a_n}{e^{a_n}}} = 1</math> deoarece din <math>\lim_{{n \to \infty}} a_n =\infty </math> rezultă că <math display="block"> \lim_{{n \to \infty}} \frac{a_n}{e^{a_n}}=0.</math>

Versiunea curentă din 11 noiembrie 2023 14:31

28437 (Nicolae Mușuroaia)

Fie șirul cu termenii strict pozitivi, dat de relația Determinați

Soluție:
Pentru orice avem , deci . Rezultă că pentru orice are loc

Deoarece pentru orice deducem că șirul Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle (a_n)_{n \geq 2} } este strict crescător.
Dacă șirul Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle (a_n)_{n \geq 2} } este mărginit superior, atunci Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle (a_n)_{n \geq 2} } este convergent cu Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \lim_{{n \to \infty}} (a_n) = a \in (0, \infty). } Trecând la limită în relația (1), obținem Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle a = \ln(e^{a_n} + a)} de unde Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle a = 0 } , absurd! Prin urmare, șirul Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle ((a_n)_{n \geq 1}} este crescător și nemărginit superior, deci Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \lim_{{n \to \infty}} a_n =\infty} .
Atunci Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln(e^{a_n} + a_n) - \ln(e^{a_n})}{a_n} \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln\left(1+\frac{a_n}{e^{a_n}}\right)}{\frac{a_n}{e^{a_n}}} = 1} deoarece din Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \lim_{{n \to \infty}} a_n =\infty } rezultă că Nu s-a putut interpreta (MathML cu fallback pe SVG sau PNG (recomandat pentru browserele moderne și uneltele de accesibilitate): Răspuns incorect („Math extension cannot connect to Restbase.”) de la serverul „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \lim_{{n \to \infty}} \frac{a_n}{e^{a_n}}=0.}