|
|
(26 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| '''27020 (Gheorghe Szöllösy)''' | | '''27020 (Gheorghe Szöllösy)''' |
|
| |
|
| Să se calculeze suma <math> \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{4^k \cdot (k!)^2 \cdot (n-2k)!}, \quad n \geq 1 | | ''Să se calculeze suma'' <math> \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 (n-2k)!}, \quad n \geq 1. |
| </math> | | </math>'' |
|
| |
|
| '''Soluție:''' | | '''Soluție:''' |
|
| |
|
| Fie <math> a_n </math> coeficientul lui <math> X^n </math> din rezolvarea lui | | Fie <math> a_n </math> coeficientul lui <math> X^n </math> din dezvoltarea lui |
|
| |
|
| <math display="block"> P(X) = \left(X + \left\lfloor\frac{1}{2}\right\rfloor\right)^{2n} = \left(X(1+X) + \left\lfloor\frac{1}{4}\right\rfloor\right)^n = \sum_{k=0}^n C_n^k X^{(n-k)} \left(\frac{1}{4^k}\right).</math> | | <math display="block"> P(X) = \left( X + \frac{1}{2}\right)^{2n} = \left(X(1+X) + \frac{1}{4}\right)^n = \sum_{k=0}^n C_n^k X^{n-k} (1+ X)^{n-k} \left.\frac{1}{4^k}\right. .</math> |
|
| |
|
| Avem <math> a_n = \left(\frac{1}{2^n}\right) C_2n^n </math>, iar pe de altă parte, | | Avem <math> a_n = \left.\frac{1}{2^n}\right. C_{2n}^n </math>, iar pe de altă parte, |
| <math display="block"> a_n = C_n^0 \cdot C_n^0 + C_n^1 \cdot C_(n-1)^1 \left(\frac{1}{4}\right) + C_n^2 \cdot C_(n-2)^1\left(\frac{1}{4^2}\right) + ... = \\ | | <math display="block"> a_n = C_n^0 \cdot C_n^0 + C_n^1 \cdot C_{n-1}^1 \left.\frac{1}{4}\right. |
| = \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} C_n^k C_(n-k)^k \cdot \left(\frac{1}{4^k}\right) </math> | | + C_n^2 \cdot C_{n-2}^2\left.\frac{1}{4^2}\right. + ... = </math><math display="block"> = \sum_{k=0}^{\left[\frac{n}{2}\right]} C_n^k C_{n-k}^k \cdot \left.\frac{1}{4^k}\right. = n! \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{(k!)^2 (n-k)! 4^k},</math> |
| | |
| | deci suma este egală cu <math> \left.\frac{(2n!)}{2^n(n!)^3}\right. .</math> |
Latest revision as of 10:50, 19 October 2023
27020 (Gheorghe Szöllösy)
Să se calculeze suma
Soluție:
Fie coeficientul lui din dezvoltarea lui
Avem , iar pe de altă parte,
deci suma este egală cu