2009 - Accesibil: Difference between revisions
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
Fișierul de intrare '''accesibil.in''' conține pe prima linie un număr natural '''p'''. Pentru toate testele de intrare, numărul '''p''' este un număr din mulțimea '''{1,2,3,4}'''. Pe linia a doua a fișierului de intrare se găsesc '''k''' și '''n''', iar pe a treia linie a fișierului de află n numere naturale separate prin câte un spațiu. | Fișierul de intrare '''accesibil.in''' conține pe prima linie un număr natural '''p'''. Pentru toate testele de intrare, numărul '''p''' este un număr din mulțimea '''{1,2,3,4}'''. Pe linia a doua a fișierului de intrare se găsesc '''k''' și '''n''', iar pe a treia linie a fișierului de află n numere naturale separate prin câte un spațiu. | ||
== Date de ieșire == | == Date de ieșire == | ||
Dacă datele sunt introduse corect, pe ecran se va afișa: '''"Datele sunt introduse corect."''', apoi: | Dacă datele sunt introduse corect, pe ecran se va afișa: '''"Datele sunt introduse corect."''', apoi: | ||
* Dacă valoarea lui '''p''' este '''1''', se va rezolva numai punctul a) din cerințe. În acest caz, în fișierul de ieșire '''accesibil.out''' se vor scrie, în ordine crescătoare, separate prin câte un spațiu, cele mai mari trei numere accesibile dintre cele n numere aflate pe a treia linie a fișierului. Se garantează că pentru '''p = 1''' sunt cel puțin trei numere accesibile în șirul de '''n''' numere. | |||
* Dacă valoarea lui '''p''' este '''2''', se va rezolva numai punctul b) din cerințe. În acest caz, în fișierul de ieșire se va scrie numărul numerelor din șirul dat care nu sunt accesibile, dar care ar deveni accesibile dacă li s-ar elimina o cifră. | * Dacă valoarea lui '''p''' este '''2''', se va rezolva numai punctul b) din cerințe. În acest caz, în fișierul de ieșire se va scrie numărul numerelor din șirul dat care nu sunt accesibile, dar care ar deveni accesibile dacă li s-ar elimina o cifră. |
Latest revision as of 15:40, 27 April 2023
Sursa: [1]
Cerinţa[edit | edit source]
Un număr natural de cel puțin două cifre se numește accesibil dacă este format din cifre consecutive în ordine strict crescătoare. (23 și 6789 sunt numere accesibile, în timp ce 7, 2334 și 654 nu sunt numere accesibile).
Scrieți un program care să citească numerele k, n și un șir de n numere naturale și să afișeze:
a) cele mai mari 3 numere accesibile, nu neapărat distincte, din șirul de n numere;
b) câte dintre numerele din șirul dat care nu sunt accesibile, devin accesibile prin eliminarea exact a unei cifre;
c) cel mai mic și cel mai mare număr accesibil format din k cifre;
d) numărul numerelor accesibile pare de k cifre și numărul numerelor accesibile impare de k cifre.
Date de intrare[edit | edit source]
Fișierul de intrare accesibil.in conține pe prima linie un număr natural p. Pentru toate testele de intrare, numărul p este un număr din mulțimea {1,2,3,4}. Pe linia a doua a fișierului de intrare se găsesc k și n, iar pe a treia linie a fișierului de află n numere naturale separate prin câte un spațiu.
Date de ieșire[edit | edit source]
Dacă datele sunt introduse corect, pe ecran se va afișa: "Datele sunt introduse corect.", apoi:
- Dacă valoarea lui p este 1, se va rezolva numai punctul a) din cerințe. În acest caz, în fișierul de ieșire accesibil.out se vor scrie, în ordine crescătoare, separate prin câte un spațiu, cele mai mari trei numere accesibile dintre cele n numere aflate pe a treia linie a fișierului. Se garantează că pentru p = 1 sunt cel puțin trei numere accesibile în șirul de n numere.
- Dacă valoarea lui p este 2, se va rezolva numai punctul b) din cerințe. În acest caz, în fișierul de ieșire se va scrie numărul numerelor din șirul dat care nu sunt accesibile, dar care ar deveni accesibile dacă li s-ar elimina o cifră.
- Dacă valoarea lui p este 3, se va rezolva numai punctul c) din cerințe. În acest caz, în fișierul de ieșire se vor scrie două valori, separate printr-un spațiu, reprezentând cel mai mic număr accesibil de k cifre și cel mai mare număr accesibil de k cifre. Dacă cele două numere ce ar trebui afișate coincid se va afișa valoarea lor comună o singură dată.
- Dacă valoarea lui p este 4, se va rezolva numai punctul d) din cerințe. În acest caz, în fișierul de ieșire se vor scrie două valori reprezentând numărul numerelor accesibile pare de k cifre și numărul numerelor accesibile impare de k cifre, în această ordine, separate prin spațiu.
În caz contrar, pe ecran se va afișa: "Datele nu au fost introduse corect."
Restricţii şi precizări[edit | edit source]
- 2 ≤ k ≤ 9 și 3 ≤ n ≤ 100.000;
- 0 ≤ numerele din șir ≤ 2.000.000.000;
- Din numărul 5073, de exemplu, prin eliminarea unei cifre se obțin numerele 507, 503, 573 și 73;
- Pentru a rezolva cerințele a) și b) nu folosim valoarea lui k, iar pentru cerințele c) și d) nu folosim șirul de n numere;
Exemple[edit | edit source]
Exemplul 1[edit | edit source]
- accesibil.in
- 2
- 3 9
- 4 34 123 1238 301 689 4560 7023 1238
- Ecran
- Datele sunt introduse corect.
- accesibil.out
- 5
Exemplul 2[edit | edit source]
- accesibil.in
- 3
- 4 3
- 12 345 67
- Ecran
- Datele sunt introduse corect.
- accesibil.out
- 1234 6789
Exemplul 3[edit | edit source]
- accesibil.in
- 1
- 3 8
- 6 12 235 5678 90 987 234 5678
- Ecran
- Datele sunt introduse corect.
- accesibil.out
- 234 5678 5678
Rezolvare[edit | edit source]
<syntaxhighlight lang="python" line>
- 2009
def verifica_restricții(k, n, numere):
# verifică dacă datele introduse sunt corecte if not (2 <= k <= 9 and 3 <= n <= 100000): return False for numar in numere: if numar < 0 or numar > 2000000000: return False return True
def numere_accesibile(numere, n):
# găsește cele mai mari trei numere accesibile numere_accesibile_list = [] for numar in numere: s = str(numar) for i in range(1, len(s)): if int(s[i]) != int(s[i - 1]) + 1: break else: numere_accesibile_list.append(numar) numere_accesibile_list.sort(reverse=True) return numere_accesibile_list[:3]
def numere_nu_accesibile(numere, n):
# găsește câte dintre numerele din șirul dat care nu sunt accesibile devin accesibile prin eliminarea exact a unei cifre numere_nu_accesibile_count = 0 for numar in numere: s = str(numar) for i in range(len(s)): if i == 0: continue numar_nou = int(s[:i] + s[i + 1:]) if numar_nou >= 10 and numar_nou not in numere and all( int(str(numar_nou)[j]) == int(str(numar_nou)[j - 1]) + 1 for j in range(1, len(str(numar_nou)))): numere_nu_accesibile_count += 1 break return numere_nu_accesibile_count
def numere_accesibile_k_cifre(k):
# găsește cel mai mic și cel mai mare număr accesibil format din k cifre cel_mai_mic = 10 ** (k - 1) cel_mai_mare = 10 ** k - 1 numere_accesibile = [] for numar in range(cel_mai_mic, cel_mai_mare + 1): s = str(numar) if all(int(s[i]) == int(s[i - 1]) + 1 for i in range(1, len(s))): numere_accesibile.append(numar) return numere_accesibile
def numere_accesibile_pare_si_impare(k):
# găsește numărul numerelor accesibile pare de k cifre și numărul numerelor accesibile impare de k cifre numere_accesibile_pare = 0 numere_accesibile_impare = 0 for numar in range(10 ** (k - 1), 10 ** k): if all(int(str(numar)[i]) == int(str(numar)[i - 1]) + 1 for i in range(1, len(str(numar)))): if numar % 2 == 0: numere_accesibile_pare += 1 else: numere_accesibile_impare += 1 return numere_accesibile_pare, numere_accesibile_impare
if __name__ == '__main__':
try: with open('accesibil.in', 'r') as f: p = int(f.readline().strip()) k, n = map(int, f.readline().split()) numere = list(map(int, f.readline().split())) except: print("Datele nu au fost introduse corect") exit()
if verifica_restricții(k, n, numere): print("Datele au fost introduse corect.") if p == 1: numere_accesibile = numere_accesibile(numere, n) with open('accesibil.out', 'w') as fout: fout.write(" ".join(map(str, numere_accesibile))) elif p == 2: numere_nu_accesibile = numere_nu_accesibile(numere, n) with open('accesibil.out', 'w') as fout: fout.write(str(numere_nu_accesibile)) elif p == 3: numere_accesibile_k_cifre = numere_accesibile_k_cifre(k) with open('accesibil.out', 'w') as fout: fout.write(str(min(numere_accesibile_k_cifre)) + " " + str(max(numere_accesibile_k_cifre))) elif p == 4: numere_accesibile_pare_si_impare = numere_accesibile_pare_si_impare(k) with open('accesibil.out', 'w') as fout: fout.write(str(numere_accesibile_pare_si_impare[0]) + " " + str(numere_accesibile_pare_si_impare[1])) else: print("Datele introduse nu sunt corecte")
</syntaxhighlight>
Explicație rezolvare[edit | edit source]
Funcția verifica_restricții verifică dacă datele de intrare sunt corecte și returnează False dacă nu sunt. Dacă sunt corecte, funcțiile corespunzătoare pentru fiecare cerință specificată de p sunt apelate.
Funcția numere_accesibile găsește cele mai mari trei numere accesibile din lista de numere date, iar funcția numere_nu_accesibile găsește câte dintre numerele din listă care nu sunt accesibile devin accesibile prin eliminarea exact a unei cifre. Funcția numere_accesibile_k_cifre găsește cel mai mic și cel mai mare număr accesibil format din k cifre, iar funcția numere_accesibile_pare_si_impare găsește numărul numerelor accesibile pare și impare de k cifre.
În cele din urmă, în funcția main, datele de intrare sunt citite din fișierul accesibil.in. Apoi, este verificat dacă datele de intrare sunt corecte și, dacă sunt, este selectată funcția corespunzătoare cerinței specificate de p. În cele din urmă, rezultatele sunt scrise în fișierul accesibil.out.