|
|
| Line 14: |
Line 14: |
| Cum <math>m\left(\sphericalangle BMA\right) = 120^\circ</math>, avem <math>m\left(\sphericalangle BMP\right) = 60^\circ</math> și <math>\left[MP\right] \equiv \left[MB\right]</math>, deci triunghiul <math>BMP</math> este echilateral. | | Cum <math>m\left(\sphericalangle BMA\right) = 120^\circ</math>, avem <math>m\left(\sphericalangle BMP\right) = 60^\circ</math> și <math>\left[MP\right] \equiv \left[MB\right]</math>, deci triunghiul <math>BMP</math> este echilateral. |
|
| |
|
| În triunghiul <math>BPR</math> avem <math>m\left(\sphericalangle RBP\right) = a + 60^\circ</math> și <math>m\left(\sphericalangle BPR\right) = 60^\circ - 2a</math>, deci <math>m\left(\sphericalangle BRP\right) = 180^\circ - \left(60^\circ + a\right) - \left(60^\circ -2a\right) = 60^\circ + a = m\left(\sphericalangle RBP\right)</math>. Cum <math>\sphericalangle RBP \equiv \sphericalangle PBR</math>, rezultă că triunghiul <math>PBR</math> este isoscel, cu <math>\left[ BP \right] \equiv \left[RP\right]</math>. | | În triunghiul <math>BPR</math> avem <math>m\left(\sphericalangle RBP\right) = a + 60^\circ</math> și <math>m\left(\sphericalangle BPR\right) = 60^\circ - 2a</math>, deci <math>m\left(\sphericalangle BRP\right) = 180^\circ - \left(60^\circ + a\right) - \left(60^\circ -2a\right) = 60^\circ + a = m\left(\sphericalangle RBP\right)</math>. Cum <math>\sphericalangle RBP \equiv \sphericalangle PBR</math>, rezultă că triunghiul <math>PBR</math> este isoscel, cu <math display="block" id="eq1">\left[ BP \right] \equiv \left[RP\right].</math>Fie <math>E</math> simetricul punctului <math>M</math> față de punctul <math>P</math>. Atunci triunghiul <math>MBE</math> este dreptunghic, cu <math>m\left(\sphericalangle MBE\right) = 90^\circ</math> și <math>m\left(\sphericalangle BMP\right) = 60^\circ</math>, deci <math>m\left(\sphericalangle BEM\right) = 30^\circ = m\left(\sphericalangle BCM\right)</math>, deci patrulaterul <math>BMCE</math> este inscriptibil. |
|
| |
|
| Fie <math>E</math> simetricul punctului <math>M</math> față de punctul <math>P</math>. Atunci triunghiul <math>MBE</math> este dreptunghic, cu <math>m\left(\sphericalangle MBE\right) = 90^\circ</math> și <math>m\left(\sphericalangle BMP\right) = 60^\circ</math>, deci <math>m\left(\sphericalangle BEM\right) = 30^\circ = m\left(\sphericalangle BCM\right)</math>, deci patrulaterul <math>BMCE</math> este inscriptibil.
| | Notăm <math>x= m\left(\sphericalangle CBP\right) = m\left(\sphericalangle BCP\right)</math>. Avem <math>m\left(\sphericalangle MPC\right) = m \left(\stackrel{\frown}{MC}\right) = 2\cdot m\left(\sphericalangle MBC\right) = 2\left(60^\circ - x\right)</math>. Atunci <math>m\left(\sphericalangle TPC\right) = m\left(\sphericalangle MPC\right) - m\left(\sphericalangle MPT\right) = 2\left(60^\circ - x\right) - 2b</math>. |
|
| |
|
| Notăm <math>x= m\left(\sphericalangle CBP\right) = m\left(\sphericalangle BCP\right)</math>. Avem <math>m\left(\sphericalangle MPC\right) = = 2\cdot m\left(\sphericalangle MBC\right) = 2\left(60^\circ - x\right)</math>. Atunci <math>m\left(\sphericalangle TPC\right) = m\left(\sphericalangle MPC\right) - m\left(\sphericalangle MPT\right) = 2\left(60^\circ - x\right) - 2b</math>.
| | În triunghiul <math>TPC</math> avem <math>m\left(\sphericalangle TCP\right) = b + 30^\circ + x</math> și <math>m\left(\sphericalangle TPC\right) = 120^\circ - 2b - 2x</math>, deci <math>m\left(\sphericalangle PTC\right) = 180^\circ - \left(b+30^\circ + x\right) - \left(120^\circ -2b - 2x\right) = 30^\circ + b + x = m\left(\sphericalangle TCP\right)</math>. Cum <math>\sphericalangle TCP \equiv \sphericalangle PCT</math>, rezultă că triunghiul <math>PCT</math> este isoscel, cu <math display="block" id="eq2">\left[ CP \right] \equiv \left[TP\right].</math>Deci punctele <math>M</math>, <math>R</math>, <math>B</math>, <math>C</math>, <math>T</math> sunt conciclice. |
|
| |
|
| În triunghiul <math>TPC</math> avem <math>m\left(\sphericalangle TCP\right) = b + 30^\circ + x</math> și <math>m\left(\sphericalangle TPC\right) = 120^\circ - 2b - 2x</math>, deci <math>m\left(\sphericalangle PTC\right) = 180^\circ - \left(b+30^\circ + x\right) - \left(120^\circ -2b - 2x\right) = 30^\circ + b + x = m\left(\sphericalangle TCP\right)</math>. Cum <math>\sphericalangle TCP \equiv \sphericalangle PCT</math>, rezultă că triunghiul <math>PCT</math> este isoscel, cu <math>\left[ CP \right] \equiv \left[TP\right]</math>.
| | a) Avem <math>m\left(\sphericalangle RPT\right) = m \left(\stackrel{\frown}{RT}\right) = m\left(\stackrel{\frown}{RM}\right) + m\left(\stackrel{\frown}{MT}\right) = 2\cdot m\left(\sphericalangle MTR\right) + 2\cdot m\left(\sphericalangle MRT\right)</math>, deci <math>\frac{1}{2} \cdot m\left(\sphericalangle RPT\right) = m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MTR\right).</math> |
|
| |
|
| Deci punctele <math>M</math>, <math>R</math>, <math>B</math>, <math>C</math>, <math>T</math> sunt conciclice.
| | b) Avem <math>m\left(\sphericalangle ARM\right) = \frac{1}{2}\cdot m\left(\stackrel{\frown}{BM}\right) = m\left(\sphericalangle BCM\right) = 30^\circ.</math> |
| | |
| a) Avem <math>m\left(\sphericalangle RPT\right) = m \left(\widearc{RT}\right) = m\left(\widearc{RM}\right) + m\left(\widearc{MT}\right) = 2\cdot m\left(\sphericalangle MTR\right) + 2\cdot m\left(\sphericalangle MRT\right)</math>, deci <math>\frac{1}{2} \cdot m\left(\sphericalangle RPT\right) = m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MTR\right).</math>
| |
| | |
| b) Avem <math>m\left(\sphericalangle ARM\right) = \frac{1}{2}\cdot m\left(\widearc{BM}\right) = m\left(\sphericalangle BCM\right) = 30^\circ.</math>
| |
E:14892 (Radu Pop & Ienuțaș Vasile)
Fie triunghiul
cu
și punctele
,
,
,
. Punctul
este situat în interiorul triunghiului
astfel încât
și
, punctul
astfel încât
cu
, iar
și
astfel încât
și
.
- Arătați că

- Determinați măsura unghiului

- Arătați că

Soluție
miniatura
Folosim notațiile
și
. Atunci
și
.
Cum
, avem
și
, deci triunghiul
este echilateral.
În triunghiul
avem
și
, deci
. Cum
, rezultă că triunghiul
este isoscel, cu
![{\displaystyle \left[BP\right]\equiv \left[RP\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00c90dde7e8416ea9e7dbc5b7e0e3a3a57acec12)
Fie

simetricul punctului

față de punctul

. Atunci triunghiul

este dreptunghic, cu

și

, deci

, deci patrulaterul

este inscriptibil.
Notăm
. Avem
. Atunci
.
În triunghiul
avem
și
, deci
. Cum
, rezultă că triunghiul
este isoscel, cu
![{\displaystyle \left[CP\right]\equiv \left[TP\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a29f287bb5df82d213f87eabb23c51bb431fd22)
Deci punctele

,

,

,

,

sunt conciclice.
a) Avem
, deci
b) Avem