15698: Difference between revisions

From Bitnami MediaWiki
No edit summary
Tag: visualeditor-switched
No edit summary
Tag: visualeditor
 
Line 8: Line 8:
Această proprietate reiese din faptul că, dacă <math>n\in\mathbb{N}</math> nu este divizibil cu <math>3</math>, atunci <math>n^2 = \mathcal{M}_3+1</math>.
Această proprietate reiese din faptul că, dacă <math>n\in\mathbb{N}</math> nu este divizibil cu <math>3</math>, atunci <math>n^2 = \mathcal{M}_3+1</math>.


Aici, deoarece <math>2022</math> este divizibil cu <math>3</math>, iar <math>2021</math> și <math>2020</math> nu sunt divizibile cu <math>3</math>, reiese că <math>3 | a</math> și  <math>3 | b</math>. Dacă <math>a \ne 0</math> sau <math>b\ne 0</math>, atunci există a = 3a<sub>1</sub> și b = 3b<sub>1</sub>, cu a<sub>1</sub>b<sub>1</sub> ϵ ℕ, iar a<sub>1</sub> < a sau b<sub>1</sub> < b. Rezultă 9 <math>\bigl(\bigl(</math>2020a<sub>1</sub><math>\bigr)</math><sup>2</sup> + <math>\bigl(</math>2021b<sub>1</sub><math>\bigr)</math><sup>2</sup> = 2022c<sup>2</sup>, ceea ce implică c = 3c<sub>1,</sub> cu c<sub>1</sub> ϵ ℕ. Relația devine <math>\bigl(</math>2020a<sub>1</sub><math>\bigr)</math><sup>2</sup> + <math>\bigl(</math>2021b<sub>1</sub><math>\bigr)</math><sup>2</sup> = 2022c<sub>1</sub><sup>2</sup>, ceea ce, ca mai sus, duce la a<sub>1</sub> = 3a<sub>2</sub>, b<sub>1</sub> = 3b<sub>2</sub>, c<sub>1</sub> = 3c<sub>2</sub>, cu a<sub>2</sub>, b<sub>2</sub>, c<sub>2</sub> ϵ ℕ, iar a<sub>2</sub> < a<sub>1</sub> sau b<sub>2</sub> < b<sub>1</sub>. Repetând raționamentul obținem un șir nesfârșit de numere naturale a > a<sub>1</sub> > a<sub>2</sub> > . . . sau un șir nesfârșit de numere naturale b > b<sub>1</sub> > b<sub>2</sub> > . . . - imposibil. Astfel, presupunerea a ≠ 0 sau b ≠ 0 este falsă.
Aici, deoarece <math>2022</math> este divizibil cu <math>3</math>, iar <math>2021</math> și <math>2020</math> nu sunt divizibile cu <math>3</math>, reiese că <math>3 | a</math> și  <math>3 | b</math>. Dacă <math>a \ne 0</math> sau <math>b\ne 0</math>, atunci există <math>a_1 \in \mathbb{N}</math>, <math>b_1 \in \mathbb{N}</math> pentru care <math>a=3a_1</math> și/sau <math>b=3b_1</math>, iar <math>a_1 < a</math> sau <math>b_1 < b</math>.  


Rămâne soluția a = b = c = 0.
Rezultă <math>9\left[\left(2020 a \right)^2 + \left(2021 b\right)^2 \right]= 2022 c^2</math>, ceea ce implică <math>c=3c_1</math>, cu <math>c_1 \in \mathbb{N}</math>.  


''Observație''. Ideea folosită în rezolvarea de mai sus pentru a arăta că a = b= 0 reprezintă ''metoda coborârii infinite.''
Relația devine <math>\left(2020 a_1 \right)^2 + \left(2021 b_1\right)^2 = 2022 c_1^2</math>, ceea ce, ca mai sus, duce la <math>a_1 = 3a_2</math>, <math>b_1=3b_2</math>, <math>c_1 = 3c_2</math>, cu
 
<math>a_2, b_2, c_2 \in \mathbb{N}</math>, iar <math>a_2 < a_1</math> sau <math>b_2 < b_1</math>.
 
Repetând raționamentul obținem un șir nesfârșit de numere naturale <math>a>a_1>a_2> \ldots</math> sau un șir nesfârșit de numere naturale <math>b>b_1>b_2> \ldots</math>, ceea ce este imposibil. Astfel, presupunerea a ≠ 0 sau b ≠ 0 este falsă.
 
Rămâne soluția <math>a=b=c=0</math>.
 
'''Observație.''' Ideea folosită în rezolvarea de mai sus pentru a arăta că <math>a=b=c=0</math> reprezintă ''metoda coborârii infinite.''

Latest revision as of 08:43, 19 December 2023

E:15698 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Determinați numerele naturale , , pentru care

Soluție: Vom folosi proprietatea:

dacă suma pătratelor a două numere naturale este divizibilă cu , atunci fiecare număr este divizibil cu 3.

Această proprietate reiese din faptul că, dacă nu este divizibil cu , atunci .

Aici, deoarece este divizibil cu , iar și nu sunt divizibile cu , reiese că și . Dacă sau , atunci există , pentru care și/sau , iar sau .

Rezultă , ceea ce implică , cu .

Relația devine , ceea ce, ca mai sus, duce la , , , cu

, iar sau .

Repetând raționamentul obținem un șir nesfârșit de numere naturale sau un șir nesfârșit de numere naturale , ceea ce este imposibil. Astfel, presupunerea a ≠ 0 sau b ≠ 0 este falsă.

Rămâne soluția .

Observație. Ideea folosită în rezolvarea de mai sus pentru a arăta că reprezintă metoda coborârii infinite.