|
|
Line 1: |
Line 1: |
| '''28354 (Florin Bojor)''' | | '''28354 (Florin Bojor)''' |
|
| |
|
| ''Fie <math>O</math> punctul de intersecție a diagonalelor patrulaterului convex <math>ABCD</math> și punctele <math>E</math>, <math>F</math>, <math>G</math> și <math>H</math> situate pe segmentele <math>OA</math>, <math>OB</math>, <math>OC</math>, respectiv <math>OD</math>, astfel încât <math>AE = BF = CG = DH</math>. Notăm cu <math>I</math>, <math>J</math>, <math>K</math> și <math>L</math> mijloacele segmentelor <math>AB</math>, <math>BC</math>, <math>CD</math>, respectiv <math>DA</math> și cu <math>M</math>,<math>N</math>, <math>P</math> și <math>Q</math> mijloacele segmentelor <math>EF</math>, <math>FG</math>, | | ''Fie <math>O</math> punctul de intersecție a diagonalelor patrulaterului convex <math>ABCD</math> și punctele <math>E</math>, <math>F</math>, <math>G</math> și <math>H</math> situate pe segmentele <math>OA</math>, <math>OB</math>, <math>OC</math>, respectiv <math>OD</math>, astfel încât <math>AE = BF = CG = DH</math>. Notăm cu <math>I</math>, <math>J</math>, <math>K</math> și <math>L</math> mijloacele segmentelor <math>AB</math>, <math>BC</math>, <math>CD</math>, respectiv <math>DA</math> și cu <math>M</math>, <math>N</math>, <math>P</math> și <math>Q</math> mijloacele segmentelor <math>EF</math>, <math>FG</math>, |
| <math>GH</math>, respectiv <math>HE</math>. Arătați că: | | <math>GH</math>, respectiv <math>HE</math>. Arătați că: |
| <ol type="a"><li> punctele <math>I</math>,<math>M</math> și <math>K</math> sunt coliniare dacă și numai dacă <math>AC=BD</math>.</li> | | <ol type="a"><li> punctele <math>I</math>,<math>M</math> și <math>K</math> sunt coliniare dacă și numai dacă <math>AC=BD</math>.</li> |
28354 (Florin Bojor)
Fie punctul de intersecție a diagonalelor patrulaterului convex și punctele , , și situate pe segmentele , , , respectiv , astfel încât . Notăm cu , , și mijloacele segmentelor , , , respectiv și cu , , și mijloacele segmentelor , ,
, respectiv . Arătați că:
- punctele , și sunt coliniare dacă și numai dacă .
- , punctele de intersecție ale dreptelor ,, și sunt vârfurile unui dreptunghi.
Soluție.
a)Fie și versorii și ai vectorilor , respectiv .
Deoarece și sunt mijloacele segmentelor , respectiv , obținem:
. (1)
Cum este mijloxul segemntului ,deducem:
(2)
Din (1) și (2) rezultă ca , și sunt coliniare dacă și numai dacă .
b) Notăm și .
Se observă că semidreptele și sunt bisectoarele unghiurilor , respectiv . Ca în (1),deducem că , iar .
Fiind bisectoarele a două unghiuri adiacente suplementare, semidreptele (OR și OS sunt perpendiculare, de unde rezultă că ,, și . Dar , deci , și sunt necoliniare, așadar , și analog . Notând cu , , , intersecțiile perechilor de drepte și , și , și , și , din cele de mai înaite rezultă că este dreptunghi.