28354: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
'''28354 (Florin Bojor)''' | '''28354 (Florin Bojor)''' | ||
''Fie <math>O</math> punctul de intersecție a diagonalelor patrulaterului convex <math>ABCD</math> și punctele <math>E</math>, <math>F</math>, <math>G</math> și <math>H</math> situate pe segmentele <math>OA</math>, <math>OB</math>, <math>OC</math>, respectiv <math>OD</math>, astfel încât <math>AE = BF = CG = DH</math>. Notăm cu <math>I</math>, <math>J</math>, <math>K</math> și <math>L</math> mijloacele segmentelor <math>AB</math>, <math>BC</math>, <math>CD</math>, respectiv <math>DA</math> și cu <math>M</math>,<math>N</math>, <math>P</math> și <math>Q</math> mijloacele segmentelor <math>EF</math>, <math>FG</math>, | ''Fie <math>O</math> punctul de intersecție a diagonalelor patrulaterului convex <math>ABCD</math> și punctele <math>E</math>, <math>F</math>, <math>G</math> și <math>H</math> situate pe segmentele <math>OA</math>, <math>OB</math>, <math>OC</math>, respectiv <math>OD</math>, astfel încât <math>AE = BF = CG = DH</math>. Notăm cu <math>I</math>, <math>J</math>, <math>K</math> și <math>L</math> mijloacele segmentelor <math>AB</math>, <math>BC</math>, <math>CD</math>, respectiv <math>DA</math> și cu <math>M</math>, <math>N</math>, <math>P</math> și <math>Q</math> mijloacele segmentelor <math>EF</math>, <math>FG</math>, | ||
<math>GH</math>, respectiv <math>HE</math>. Arătați că: | <math>GH</math>, respectiv <math>HE</math>. Arătați că: | ||
<ol><li> | <ol type="a"><li> punctele <math>I</math>,<math>M</math> și <math>K</math> sunt coliniare dacă și numai dacă <math>AC=BD</math>.</li> | ||
<li> | <li> <math>AC \not= BD</math>, punctele de intersecție ale dreptelor <math>IM</math>,<math>NJ</math>,<math>PK</math> și <math>LQ</math> sunt vârfurile unui dreptunghi.</li></ol>'' | ||
Latest revision as of 13:31, 4 December 2023
28354 (Florin Bojor)
Fie punctul de intersecție a diagonalelor patrulaterului convex și punctele , , și situate pe segmentele , , , respectiv , astfel încât . Notăm cu , , și mijloacele segmentelor , , , respectiv și cu , , și mijloacele segmentelor , , , respectiv . Arătați că:
- punctele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} , și sunt coliniare dacă și numai dacă .
- , punctele de intersecție ale dreptelor ,, și sunt vârfurile unui dreptunghi.
Soluție.
a)Fie și versorii Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{i}}
și ai vectorilor , respectiv .
Deoarece și sunt mijloacele segmentelor , respectiv , obținem:
. (1)
Cum este mijloxul segemntului ,deducem:
(2)
Din (1) și (2) rezultă ca , și sunt coliniare dacă și numai dacă .
b) Notăm și .
Se observă că semidreptele și sunt bisectoarele unghiurilor , respectiv . Ca în (1),deducem că , iar .
Fiind bisectoarele a două unghiuri adiacente suplementare, semidreptele (OR și OS sunt perpendiculare, de unde rezultă că ,, și . Dar , deci , și sunt necoliniare, așadar , și analog . Notând cu , , , intersecțiile perechilor de drepte și , și , și , și , din cele de mai înaite rezultă că este dreptunghi.