P:1793: Difference between revisions

From Bitnami MediaWiki
Created page with "'''P:1793 (Ioana Roman)]]''' ''Determinați cel mai mic număr de forma <math>\overline{abcd}</math> pentru care are loc egalitatea <math>1+\overline{abcd}= 88 \times \overline{cd}</math>.'' '''Soluție''' Egalitatea din enunț se scrie în mod echivalent <math>1+\overline{ab} \times 100 + \overline{cd}= 88 \times \overline{cd}</math>, ceea ce conduce la <math display="block">\overline{ab01}= 87 \times \overline{cd}</math>. Cum doar produsul <math>7 \times 3</math>..."
 
mNo edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
'''P:1793 (Ioana Roman)]]'''
'''P:1793 (Ioana Roman)'''


''Determinați cel mai mic număr de forma <math>\overline{abcd}</math> pentru care are loc egalitatea <math>1+\overline{abcd}= 88 \times \overline{cd}</math>.''
''Determinați cel mai mic număr de forma <math>\overline{abcd}</math> pentru care are loc egalitatea <math>1+\overline{abcd}= 88 \times \overline{cd}</math>.''
Line 5: Line 5:
'''Soluție'''
'''Soluție'''


Egalitatea din enunț se scrie în mod echivalent  <math>1+\overline{ab} \times 100 + \overline{cd}= 88 \times \overline{cd}</math>, ceea ce conduce la <math display="block">\overline{ab01}= 87 \times \overline{cd}</math>.


Cum doar produsul <math>7 \times 3</math> are ultima cifră egală cu <math>1</math>, deducem că <math>d= 3</math>.
 
Egalitatea din enunț se scrie în mod echivalent  <math>1+\overline{ab} \times 100 + \overline{cd}= 88 \times \overline{cd}</math>, ceea ce conduce la <math display="block">\overline{ab01}= 87 \times \overline{cd}.</math>Cum doar produsul <math>7 \times 3</math> are ultima cifră egală cu <math>1</math>, deducem că <math>d= 3</math>.


Avem produsele
Avem produsele


<math>87 \times 13 = 1131</math>
<math display="block">87 \times 13 = 1131</math><math display="block">87 \times 23 = 2001</math><math display="block">87 \times 33 = 2871</math><math display="block">87 \times 43 = 3741</math><math display="block">87 \times 53 = 4611</math><math display="block">87 \times 63 = 5481</math><math display="block">87 \times 73 = 6351</math><math display="block">87 \times 83 = 7221</math><math display="block">87 \times 93 = 8091</math>
<math>87 \times 23 = 2001</math>
<math>87 \times 33 = 2871</math>
<math>87 \times 43 = 3741</math>
<math>87 \times 53 = 4611</math>
<math>87 \times 63 = 5481</math>
<math>87 \times 73 = 6351</math>
<math>87 \times 83 = 7221</math>
<math>87 \times 93 = 8091</math>


de unde deducem că doar produsul  <math>87 \times 23 = 2001</math> este cel care corespunde.
de unde deducem că doar produsul  <math>87 \times 23 = 2001</math> este cel care corespunde.


În concluzie, unicul număr de forma <math>\overline{abcd}</math> pentru care are loc egalitatea <math>1+\overline{abcd}= 88 \times \overline{cd}</math> este <math display="block">2023</math>.
În concluzie, unicul număr de forma <math>\overline{abcd}</math> pentru care are loc egalitatea <math>1+\overline{abcd}= 88 \times \overline{cd}</math> este <math display="block">\overline{abcd} = 2023.</math>

Latest revision as of 14:09, 17 August 2025

P:1793 (Ioana Roman)

Determinați cel mai mic număr de forma pentru care are loc egalitatea .

Soluție


Egalitatea din enunț se scrie în mod echivalent , ceea ce conduce la

Cum doar produsul are ultima cifră egală cu , deducem că .

Avem produsele

de unde deducem că doar produsul este cel care corespunde.

În concluzie, unicul număr de forma pentru care are loc egalitatea este