28250: Revision history

Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.

31 October 2023

28 October 2023

  • curprev 14:0714:07, 28 October 2023Ghetie Gabriela Claudia talk contribs 996 bytes +996 Pagină nouă: <sub>'''<big>28250 (Codruț-Sorin Zmicală)</big>'''</sub> ''Calculați'' ''<math>\lim_{n \to \infty}\sqrt[n]{\int_{0}^{1} (\sqrt{x}+x^n})^ndx</math>.'' '''Soluție:''' Fie <math>a_n=\int_{0}^{1} (\sqrt{x}+x^n)^ndx</math>, n<math>\in\Nu^*</math>. Cu binomul lui Newton avem <math>(\sqrt{x}+x^n)^n=\sum_{k=0}^n\binom{n}{k}x^\tfrac{(2n-1)k+n}{2}</math>, iar prin integrare pe [0,1] obținem <math>a_n=\sum_{k=0}^n\binom{n}{k}\cdot\frac{2}{(2n-1)k+n+2}</math>. Pentru orice <ma... Tag: Visual edit