Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Bitnami MediaWiki
Search
Search
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
E:14892
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
'''E:14892 (Radu Pop & Ienuțaș Vasile)''' ''Fie triunghiul'' <math>ABC</math> ''cu'' <math>m\left(\sphericalangle C\right) > 30^\circ</math> ''și punctele'' <math>M</math>, <math>P</math>, <math>R</math>, <math>T</math>. ''Punctul'' <math>M</math> ''este situat în interiorul triunghiului'' <math>ABC</math> ''astfel încât'' <math>m\left(\sphericalangle BMA\right) = 120^\circ</math> ''și <math>m\left(\sphericalangle BCM\right) = 30^\circ</math>, punctul <math>P\in \left(MD\right.</math> astfel încât <math>\left[MP\right] \equiv \left[MB\right]</math> cu <math>AM \cap BC = \left\{D\right\}</math>, iar <math>R\in \left(AB\right)</math> și <math>T \in \left(AC\right)</math> astfel încât <math>m\left(\sphericalangle RBM\right) = \frac{1}{2} \cdot m\left(\sphericalangle RPM\right)</math> și <math>m\left(\sphericalangle TPM\right) = 2 \cdot m\left(\sphericalangle TCM\right)</math>.'' # ''Arătați că'' <math>\frac{1}{2} \cdot m\left(\sphericalangle RPT\right) = m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MTR\right)</math> # ''Determinați măsura unghiului'' <math>\sphericalangle ARM</math> # ''Arătați că'' <math> m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MAT\right) = m\left(\sphericalangle DMC\right)</math> '''Soluție''' [[Fișier:E-14892 a.png|miniatura]] Folosim notațiile <math>m\left(\sphericalangle RBM\right) = a</math> și <math>m\left(\sphericalangle TCM\right) = b</math>. Atunci <math>m\left(\sphericalangle MPR\right) = 2a</math> și <math>m\left(\sphericalangle MPT\right) = 2b</math>. Cum <math>m\left(\sphericalangle BMA\right) = 120^\circ</math>, avem <math>m\left(\sphericalangle BMP\right) = 60^\circ</math> și <math>\left[MP\right] \equiv \left[MB\right]</math>, deci triunghiul <math>BMP</math> este echilateral. În triunghiul <math>BPR</math> avem <math>m\left(\sphericalangle RBP\right) = a + 60^\circ</math> și <math>m\left(\sphericalangle BPR\right) = 60^\circ - 2a</math>, deci <math>m\left(\sphericalangle BRP\right) = 180^\circ - \left(60^\circ + a\right) - \left(60^\circ -2a\right) = 60^\circ + a = m\left(\sphericalangle RBP\right)</math>. Cum <math>\sphericalangle RBP \equiv \sphericalangle PBR</math>, rezultă că triunghiul <math>PBR</math> este isoscel, cu <math display="block" id="eq1">\left[ BP \right] \equiv \left[RP\right].</math>Fie <math>E</math> simetricul punctului <math>M</math> față de punctul <math>P</math>. Atunci triunghiul <math>MBE</math> este dreptunghic, cu <math>m\left(\sphericalangle MBE\right) = 90^\circ</math> și <math>m\left(\sphericalangle BMP\right) = 60^\circ</math>, deci <math>m\left(\sphericalangle BEM\right) = 30^\circ = m\left(\sphericalangle BCM\right)</math>, deci patrulaterul <math>BMCE</math> este inscriptibil. Notăm <math>x= m\left(\sphericalangle CBP\right) = m\left(\sphericalangle BCP\right)</math>. Avem <math>m\left(\sphericalangle MPC\right) = m \left(\stackrel{\frown}{MC}\right) = 2\cdot m\left(\sphericalangle MBC\right) = 2\left(60^\circ - x\right)</math>. Atunci <math>m\left(\sphericalangle TPC\right) = m\left(\sphericalangle MPC\right) - m\left(\sphericalangle MPT\right) = 2\left(60^\circ - x\right) - 2b</math>. În triunghiul <math>TPC</math> avem <math>m\left(\sphericalangle TCP\right) = b + 30^\circ + x</math> și <math>m\left(\sphericalangle TPC\right) = 120^\circ - 2b - 2x</math>, deci <math>m\left(\sphericalangle PTC\right) = 180^\circ - \left(b+30^\circ + x\right) - \left(120^\circ -2b - 2x\right) = 30^\circ + b + x = m\left(\sphericalangle TCP\right)</math>. Cum <math>\sphericalangle TCP \equiv \sphericalangle PCT</math>, rezultă că triunghiul <math>PCT</math> este isoscel, cu <math display="block" id="eq2">\left[ CP \right] \equiv \left[TP\right].</math>Deci punctele <math>M</math>, <math>R</math>, <math>B</math>, <math>C</math>, <math>T</math> sunt conciclice. a) Avem <math>m\left(\sphericalangle RPT\right) = m \left(\stackrel{\frown}{RT}\right) = m\left(\stackrel{\frown}{RM}\right) + m\left(\stackrel{\frown}{MT}\right) = 2\cdot m\left(\sphericalangle MTR\right) + 2\cdot m\left(\sphericalangle MRT\right)</math>, deci <math>\frac{1}{2} \cdot m\left(\sphericalangle RPT\right) = m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MTR\right).</math> b) Avem <math>m\left(\sphericalangle ARM\right) = \frac{1}{2}\cdot m\left(\stackrel{\frown}{BM}\right) = m\left(\sphericalangle BCM\right) = 30^\circ.</math> c) Din <math>m\left( \sphericalangle DMC \right) = m\left( \sphericalangle MAC \right) + m\left( \sphericalangle AMC \right)</math>, și <math>m \left( \stackrel{\frown}{MT} \right) = \frac{1}{2} \cdot m\left( \sphericalangle MCT \right) = \frac{1}{2} \cdot m\left( \sphericalangle MRT \right)</math> se deduce că are loc egalitatea <math display="block"> m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MAT\right) = m\left(\sphericalangle DMC\right)</math>
Summary:
Please note that all contributions to Bitnami MediaWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Bitnami MediaWiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Toggle limited content width