Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Bitnami MediaWiki
Search
Search
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
28450
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
'''28450 (Nicolae Mușuroia)''' ''Fie <math>n \in </math> ℕ, <math>n \geq 4</math> și <math>p \in \{1, 2,..., [n/2]\}.</math> Considerăm mulțimile disjuncte <math>A = \{ a_{1}, a_{2},..., a_{n} \}</math> și <math>B = \{ b_{1}, b_{2},..., b_{n} \}</math>, formate din primii <math>n</math> termeni a două progresii aritmetice <math>(a_{k})_{k\geq1}</math> și <math>(b_{k})_{k\geq1}</math> cu rații opuse, nenule. Arătați că printre orice <math>n + p + 1</math> elemente distincte ale mulțimii <math>A \cup B</math> există două a căror sumă este egală cu <math>a_{2p} + b_p.</math>'' '''Soluție:''' Fie <math>r \in </math> <math>{\displaystyle \mathbb {R^*} }</math> rația primei progresii. Observăm că <math display="block">a_{2p} + b_p = a_1 + b_1 + p \cdot r = a_{p+1} + b_1 = a_{p+2} + b_2 = ... = a_{n} + b_{n-p}. (1) </math> Presupunem că putem alege <math>n + p + 1 </math>, elemente distincte ale lui <math>A \cup B</math>, astfel încât suma a oricăror două dintre acestea să fie diferită de <math>a_{2p} + b_p.</math> Din (1) deducem că printre aceste <math>n + p + 1</math> elemente trebuie să se afle cel mult câte un element din fiecare dintre mulțimile <math> \{ a_{p+1}, b_{1} \}, \{ a_{p+2}, b_{2} \},..., \{ a_{n}, b_{n-p} \}</math>. Cum <math>2n - (n - p) = n + p < n + p + 1</math>, rezultă că printre cele <math>n + p + 1</math> numere alese se află cel puțin două care aparțin aceleiași dintre mulțimile precedente, contradicție.
Summary:
Please note that all contributions to Bitnami MediaWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Bitnami MediaWiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Toggle limited content width