Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Bitnami MediaWiki
Search
Search
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
15685
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
'''E:15685 (Cristina Vijdeliuc și Mihai Vijdeliuc, Baia Mare)''' ''Se consideră triunghiul dreptunghic <math> ABC </math>, cu <math> \angle A\ = 90^\circ </math> și <math> \angle B\ = 30^\circ </math>. Punctul <math>D</math> aparține laturii <math> BC </math> astfel încât <math> AD \perp BC </math>, punctul <math> M </math> este mijlocul segmentului <math> BC </math>, iar punctul <math> E </math> aparține laturii <math> AB </math> astfel încât <math> ME \perp AB </math>. Arătați că <math> DE \perp AM </math>.'' '''Soluție''' Deoarece <math> AM </math> este mediana în triunghiul dreptunghic <math> ABC </math> avem <math> AM = BM = CM </math>. Din <math> AM = BM </math> rezultă că <math> \triangle AMB\ </math> este isoscel și, cum <math>ME \perp AB</math>, <math>ME</math> este bisectoarea unghiului <math> AMB </math>. Cum <math> \angle B\ = 30^\circ </math> și <math> ME \perp AB </math> obținem <math> \angle EMB\ = 60^\circ </math>, de unde <math> \angle AME\ = 60^\circ, (1) </math>. Pe de altă parte <math> \angle AMC\ </math> este unghi exterior triunghiului <math> AMB </math> și atunci <math> \angle AMC\ = 60^\circ, (2) </math>. Din <math> (1) </math> și <math> (2) </math> deducem că <math> MA </math> este bisectoarea unghiului <math> DME, (3) </math>. Din <math> AM = CM </math> și <math> \angle AMC\ = 60^\circ </math> rezultă că <math> \triangle AMC\ </math> este echilateral și, cum <math> AD \perp BC </math>, deducem că <math> D </math> este mijlocul segmentului <math> CM </math>, deci <math> DM = CM/2, (4) </math>. Din <math> \triangle BEM\ </math> este dreptunghic și <math> \angle B\ = 30^\circ </math> obținem <math> ME = BM/2, (5) </math>. Cum <math> CM = BM </math>, din <math> (4) </math> și <math> (5) </math> rezultă <math> DM = EM </math>, adică <math> \triangle DME\ </math> este isoscel. De aici și din <math> (3) </math> rezultă <math> MA \perp DE </math>.
Summary:
Please note that all contributions to Bitnami MediaWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Bitnami MediaWiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Toggle limited content width